Nonparametric conditional variance and error density estimation in regression models with dependent errors and predictors
نویسندگان
چکیده
منابع مشابه
On conditional variance estimation in nonparametric regression
In this paper we consider a nonparametric regression model in which the conditional variance function is assumed to vary smoothly with the predictor. We offer an easily implemented and fully Bayesian approach that involves the Markov chain Monte Carlo sampling of standard distributions. This method is based on a technique utilized by Kim, Shephard, and Chib (1998) for the stochastic volatility ...
متن کاملNonparametric Regression Under Dependent Errors With Infinite Variance
We consider local least absolute deviation (LLAD) estimation for trend functions of time series with heavy tails which are characterised via a symmetric stable law distribution. The setting includes both causal stable ARMA model and fractional stable ARIMA model as special cases. The asymptotic limit of the estimator is established under the assumption that the process has either short or long ...
متن کاملEstimation of observation-error variance in errors-in-variables regression
Assessing the variability of an estimator is a key component of the process of statistical inference. In nonparametric regression, estimating observation-error variance is the principal ingredient needed to estimate the variance of the regression mean. Although there is an extensive literature on variance estimation in nonparametric regression, the techniques developed in conventional settings ...
متن کاملEstimation in Nonparametric Regression with Nonregular Errors
For sufficiently nonregular distributions with bounded support, the extreme observations converge to the boundary points at a faster rate than the square root of the sample size. In a nonparametric regression model with such a nonregular error distribution, this fact can be used to construct an estimator for the regression function that converges at a faster rate than the Nadaraya– Watson estim...
متن کاملNonparametric Conditional Density Estimation in a High-Dimensional Regression Setting
In some applications (e.g., in cosmology and economics), the regression E[Z|x] is not adequate to represent the association between a predictor x and a response Z because of multi-modality and asymmetry of f(z|x); using the full density instead of a singlepoint estimate can then lead to less bias in subsequent analysis. As of now, there are no effective ways of estimating f(z|x) when x represen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2011
ISSN: 1935-7524
DOI: 10.1214/11-ejs629